Accurate precipitation measurement is critical for managing flood and drought risks. Traditional meteorological tools, such as rain gauges and remote sensors, have limitations in resolution, coverage, and cost-effectiveness. Recently, the opportunistic use of microwave communication signals has been explored to improve precipitation estimation. While there is growing interest in using satellite-to-earth microwave link (SMLs) for machine learning-based precipitation estimation, direct rainfall estimation from raw signal-to-noise ratio (SNR) data via deep learning remains underexplored. This study investigates a range of machine learning (ML) approaches, including deep learning (DL) models and traditional methods like gradient boosting machine (GBM), for estimating rainfall rates from SNR data collected by interactive satellite receivers. We develop real-time models for rainfall detection and estimation using downlink SNR signals from satellites to user terminals. By leveraging a year-long dataset from multiple locations—including SNR measurements paired with disdrometer and rain-gauge data—we explore and evaluate various ML models. Our final models include ensemble approaches for both rainfall detection and cumulative rainfall estimation. The proposed models provide a reliable solution for estimating precipitation using Earth–satellite microwave links, potentially improving precipitation monitoring. Compared to the state-of-the-art power-law-based models applied to similar datasets reported in the literature, our ML models achieve a 46% reduction in the RMSE