AimDespite the large literature documenting the negative effects of invasive grasses, we lack an understanding of the drivers of their habitat suitability, especially for shade‐tolerant species that do not respond positively to canopy disturbance. We aimed to understand the environmental niche and potential spatial distribution of a relatively new invasive species, wavyleaf basketgrass (Oplismenus undulatifolius (Ard.) Roem. & Schult, WLBG) by leveraging data available at two different spatial scales.LocationMid‐Atlantic region of the United States.MethodsMaximum entropy modeling (Maxent) was used to predict the habitat suitability of WLBG at the regional scale and the landscape scale. Following variable evaluation, model calibration, and model evaluation, final models were created using 1,000 replicates and projected to each study area.ResultsAt the regional scale, our best models show that suitability for WLBG was driven by relatively high annual mean temperatures, low temperature seasonality and monthly range, low slope, and high cumulative Normalized Difference Vegetation Index (NDVI). At the landscape scale, suitability was highest near roads and streams, far from trails, at low elevations, in sandy, moist soil, and in areas with high NDVI.Main ConclusionsWe found that invasion potential of this relatively new invader appears high in productive, mesic habitats at low slope and elevations. At the regional scale, our model predicted areas of suitable habitat far outside areas where WLBG has been reported, including large portions of Virginia and West Virginia, suggests serious potential for spread. However, large portions of this area carry a high extrapolation risk and should therefore be interpreted with caution. In contrast, at the landscape level, the suitability of WLBG is largely restricted to areas near current presence points, suggesting that the expansion risk of this species within Shenandoah National Park is somewhat limited.
Read full abstract