The operation time of an ideal reliable wafer scanner model is defined at the die level where the actual exposure process takes place as the time unit per die, or at the wafer substrate level as the time unit per wafer substrate. Therefore, the machine throughput is given as the reciprocal of the operation time. The involved motion profiles of a machine, namely the step-and-scan trajectories, function as the heartbeats that drive its multidisciplinary elements, which suggests that a multidisciplinary design optimization should be involved when such profiles are selected or designed. This is also true when considering the traverse motion profiles among rows and columns within the wafer substrate. The step-and-scan trajectories affect the machine throughput, performance, and die yield. The effects of tracking such profiles appear as structural vibration, tracking errors, and thermal loading at various machine elements such as the actuators, the reticle, the wafer, and the projection elements specifically when the exposure high-energy duration and frequency are not taken into consideration while designing the reference motion. From the dynamics perspective, having a reference motion with nonzero and bounded higher-order derivatives is recommended since it enhances the tracking performance of the machine, however, its ability to increase the operation time is usually overlooked. In an attempt to understand such effects, we present a case study that outlines the aforementioned aspects using three step-and-scan profiles of mainly <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3^{rd}$ </tex-math></inline-formula> -order. Taking the dynamics of the driven stage into consideration through input shaping, both the step-and-scan and traverse motion profiles are analyzed. We provide analytical expressions that can be used to generate both types of motion profiles on the fly without additional optimization. A simulation example of a simplified wafer scanner machine shows the usefulness of the proposed framework. Note to Practitioners—Choosing the most suitable operating conditions of a lithography machine is challenging. These conditions affect machine productivity, profit margin, and maintenance. In this paper, we reveal the relation between the selection of operating conditions based on several decision variables- and the kinodynamic step-and-scan trajectory generation based on specific machine parameters and clients’ requirements. Being chart-based, the selection process of an operating point can be less practical at some points. However, using appropriate curve fitting tools, the information provided in the optimal operating charts can be put into suboptimal closed-form expressions that facilitate the selection process. Therefore, the designed trajectories parameters can be easily saved in lookup tables for ease of evaluation and future use. This helps in accommodating changes in the operation plans and flexible manufacturing systems. Also, starting with a given set of machine parameters, it is possible to calculate the optimal machine operating point when the input shaping technique is used, as illustrated in this paper.
Read full abstract