Troposphere’s asymmetry can introduce errors ranging from centimeters to decimeters at low elevation angles, which cannot be ignored in high-precision positioning technology and meteorological research. The traditional two-axis gradient model, which strongly relies on an open-sky environment of the receiver, exhibits misfits at low elevation angles due to their simplistic nature. In response, we propose a directional mapping function based on cyclic B-splines named B-spline mapping function (BMF). This model replaces the conventional approach, which is based on estimating Zenith Wet Delay and gradient parameters, by estimating only four parameters which enable a continuous characterization of the troposphere delay across any directions. A simulation test, based on a numerical weather model, was conducted to validate the superiority of cyclic B-spline functions in representing tropospheric asymmetry. Based on an extensive analysis, the performance of BMF was assessed within precise point positioning using data from 45 International GNSS Service stations across Europe and Africa. It is revealed that BMF improves the coordinate repeatability by approximately 10%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10\\%$$\\end{document} horizontally and about 5%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$5\\%$$\\end{document} vertically. Such improvements are particularly pronounced under heavy rainfall conditions, where the improvement of 3-dimensional root mean square error reaches up to 13%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$13\\%$$\\end{document}.
Read full abstract