The complexity and uncertainty of vibration signals from distribution transformers pose significant challenges for diagnosing mechanical faults. To address this, this paper proposes a novel fault diagnosis model for distribution transformers, which combines a cross-domain fusion multi-scale convolutional autoencoder (CFMS-CAE) with an open-set domain adaptation classifier (OSDA-C). Specifically, in order to extract more comprehensive features, a convolutional autoencoder (CAE) model based on multi-output objectives is constructed to extract the time-frequency domain characteristics of transformer vibration signals. Multiple-scale convolutional layers are incorporated into the convolutional autoencoder to enable multi-range feature extraction. Additionally, parameter optimization is achieved using the crayfish optimization algorithm (COA). Subsequently, an open-set domain adaptation module is integrated into the convolutional neural network classifier to establish boundaries for each category and facilitate the identification of transformer fault categories, including unknown-type faults. The experimental results demonstrate that the proposed method is effective for fault identification in both dry-type and oil-immersed transformers, with average accuracy reaching 99.35% and 99.62%, respectively. For unknown-type faults, the accuracy also achieved 100% and 97.5%, respectively.
Read full abstract