In this study, a new ultra-low-temperature co-fired ceramic (ULTCC) glass-ZnO-SiO2-B2O3CeO2−MgO-Al2O3 composite was developed and its applicability as a dielectric substrate in emerging high-performance communication technologies in the microwave and millimetre-wave frequency ranges was investigated. The novel material composition enables achieving good sinterability at a low fabrication temperature of 470 °C. Extensive studies have been conducted on the microstructure, porosity, water absorption, surface roughness, and thermal expansion coefficient. Following this analysis, the dielectric properties of the bulk glass-ceramic composites and the final ULTCC substrates were characterised. These measurements were conducted within a broad frequency range of 5 GHz–1.1 THz using split-post dielectric resonators, a Fabry-Perot open resonator, and a time-domain spectrometer, resulting in quasi-continuous frequency characteristics of the complex permittivity. Furthermore, the fabricated ULTCC substrates were subjected to surface-wise measurements, which provided 2D maps of the dielectric properties as qualitative and quantitative measures of the uniformity and quality of the material.
Read full abstract