Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) cadastral data, ground measurements (total station, Global Positioning System (GPS), ground laser scanning) and air-based (such as Unmanned Aerial Vehicle—UAV) measurement methods are used to determine building heights, more comprehensive and advanced techniques need to be used in large-scale studies, such as in cities or countries. Although satellite-based altimetry data, such as Ice, Cloud and land Elevation Satellite (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI), provide important information on building heights due to their high vertical accuracy, it is often difficult to distinguish between building photons and other objects. To overcome this challenge, a self-adaptive method with minimal data is proposed. Using building photons from ICESat-2 and GEDI data and building footprints from the New York City (NYC) and Los Angeles (LA) open data platform, the heights of 50,654 buildings in NYC and 84,045 buildings in LA were estimated. As a result of the study, root mean square error (RMSE) 8.28 m and mean absolute error (MAE) 6.24 m were obtained for NYC. In addition, 46% of the buildings had an RMSE of less than 5 m and 7% less than 1 m. In LA data, the RMSE and MAE were 6.42 m and 4.66 m, respectively. It was less than 5 m in 67% of the buildings and less than 1 m in 7%. However, ICESat-2 data had a better RMSE than GEDI data. Nevertheless, combining the two data provided the advantage of detecting more building heights. This study highlights the importance of using minimum data for determining urban-scale building heights. Moreover, continuous monitoring of urban alterations using satellite altimetry data would provide more effective energy consumption assessment and management.
Read full abstract