Background & objectives:The lower recovery of competent oocytes in buffalo species limits the commercialization of in vitro embryo production technology in field condition. In this context, pre-maturation of small follicle (SF)-derived oocytes with meiotic inhibition may be a promising alternative to obtain more number of competent oocytes. Thus, the present study was conducted with an objective to enhance the developmental potential of less competent SF-derived buffalo oocytes.Methods:All the visible follicles (used for aspiration) from buffalo ovaries were divided into two categories: large follicle (LF) (follicles having diameter ≥6 mm) and SF (follicles of diameter <6 mm). The competence of LF and SF oocytes was observed in terms of brilliant cresyl blue (BCB) staining, cleavage rate, blastocyst rate and relative gene expression of oocyte and blastocyst competence markers. Thereafter, less competent SF oocytes were treated with 0, 12.5, 25, 50 and 100 mM doses of roscovitine (cyclin-dependent kinase inhibitor) to enhance their developmental potential.Results:Based on parameters studied, LF oocytes were found to be more competent than SF oocytes. Pre-maturation incubation of SF oocytes with roscovitine reversibly arrested oocyte maturation for 24 h to ensure the proper maturation of less competent oocytes. A significantly higher number of BCB-positive oocytes were noted in roscovitine-treated group than SF group. Cleavage and blastocyst rates were also higher in roscovitine-treated group. The relative messenger RNA expression of oocyte (GDF9, BMP15, GREM1, EGFR, PTGS2 and HAS2) as well as blastocyst (INF-τ, GLUT1 and POU5F1) competence markers was significantly greater in roscovitine-treated group relative to SF group. Again, on comparison with LF group, these parameters depicted a lower value in the treatment group.Interpretation & conclusions:The findings of this study has revealed that pre-maturation incubation of SF-derived oocytes with 25 μM roscovitine can improve its developmental competence and thus can be utilized to get maximum number of competent oocytes for better commercialization of in vitro embryo production technology in buffalo.
Read full abstract