The conversion of solar energy into chemical energy by the reduction of small molecules provides a promising solution for the effective energy storage and transport. In this manuscript, we have highlighted our recent researches on the catalysis of cobalt-macrocycle complexes for the reduction of O2, proton and CO2. We have successfully clarified the reaction mechanisms of catalytic O2 reduction with cobalt phthalocyanine (Co[Formula: see text](Pc)) and cobalt chlorin (Co[Formula: see text](Ch)) based on detailed kinetic study under homogeneous conditions. The presence of proton-accepting moieties on these macrocyclic ligands enhances the electron-accepting ability, leading to the efficient catalytic two-electron reduction of O2 to produce hydrogen peroxide (H2O[Formula: see text] with high stability and less overpotential in acidic solutions. When Co[Formula: see text](Ch) is adsorbed on multi-walled carbon nanotubes (MWCNTs) and employed as an electrocatalyst, CO2 was successfully reduced to form CO with a Faradaic efficiency of 89% at an applied potential of -1.1 V vs. NHE in an aqueous solution. Finally, photocatalytic H2 evolution was attained from ascorbic acid with Co[Formula: see text](Ch) as a catalyst and [Ru(bpy)3][Formula: see text] (bpy [Formula: see text] 2,2[Formula: see text]-bipyridine) as a photocatalyst via a one-photon two-electron process.
Read full abstract