AbstractThe double hydroxide of Li+ and Al3+ is an anionic clay comprising positively charged metal hydroxide layers and intercalated anions. While the structure of the iono-covalently bonded metal hydroxide layer is well known, relatively less knowledge is available regarding the manner in which the anions and water molecules are packed in the interlayer region. The sulfate ion is of special interest as it can potentially intercalate in a multiplicity of orientations and grow an extended hydration sphere. The sulfate-intercalated double hydroxide was synthesized by the imbibition of Li2SO4 into both the gibbsite and bayerite forms of Al(OH)3 to obtain layered double hydroxides with the nominal formula Li2Al4(OH)12SO4·nH2O (n = 4–8). The as-prepared compounds were poorly ordered and did not yield any structural information. Temperature-induced partial dehydration yielded ordered phases of different structures in the two systems. Simulation of the powder patterns of different model structures, followed by structure refinement in both direct and reciprocal spaces, showed that the gibbsite-derived phase yielded a two-layer polytype of hexagonal symmetry (space group P63/m). The local symmetry of the sulfate ion was close to D2d with one of the C2 axes of the SO42− being nearly parallel to the c axis of the crystal. The bayerite-derived phase yielded a one-layer polytype of monoclinic symmetry (space group C2/m). The sulfate ion was oriented with its C3 axes tilted away from the stacking direction. Cooling and rehydration (relative humidity ~70%) resulted in a reversible expansion of the basal spacing due to the ingress of water molecules from the ambient humidity into the interlayer region. Hydration in both cases resulted in turbostratic disorder. The disorder in the bayerite-derived phase was a result of random intergrowth of motifs with rhombohedral and monoclinic symmetries.
Read full abstract