This paper presents a comprehensive field investigation of the swelling-shrinkage behavior of an expansive soil ground under high-speed railway embankment loads. In this study, a test site close to the Kunming-Nanning high-speed railway (KNHR) was chosen for the construction of four full-scale field test facilities for artificially soaking the expansive soil ground. Three of the facilities consist of embankments of three different heights, while the fourth facility is for a series of plate load swelling tests. All the test embankments were fully instrumented to monitor the ground deformation and the changes in volumetric water content profiles of the foundations. The full-scale field tests were complemented by a detailed site investigation comprised of cone penetration tests (CPTs), standard penetration tests (SPTs) and a comprehensive laboratory characterization of intact expansive soil samples retrieved from the test site. The results obtained from the laboratory and field tests show that the swelling behavior of the expansive soil ground mainly depends on the embankment load. By properly designing the embankment height and considering the maximum swelling pressure the expansive ground could induce, the heave of the embankment could be controlled efficiently. The measured displacements at the ground surface are well correlated with the evolution of measured volumetric water contents within a ground depth of around 4.5 m. The majority of these displacements occurred when the ground was approaching saturation along both wetting and drying paths. Finally, a simple method based on one-dimensional test results was proposed, and a good performance was shown in predicting the heave or settlement of embankments over an expansive soil ground upon wetting and drying.