The impact of pollution on the Ologe Lagoon was assessed by comparing physicochemical properties, hydrocarbon concentrations and microbial community structures of the sediments obtained from distinct sites of the lagoon. The locations were the human activity site (OLHAS), industrial-contaminated sites (OLICS) and relatively undisturbed site (OLPS). The physicochemical properties, heavy metal concentrations and hydrocarbon profiles were determined using standard methods. The microbial community structures of the sediments were determined using shotgun next-generation sequencing (NGS), taxonomic profiling was performed using centrifuge and statistical analysis was done using statistical analysis for metagenomics profile (STAMP) and Microsoft Excel. The result showed acidic pH across all sampling points, while the nitrogen content at OLPS was low (7.44 ± 0.085mg/L) as compared with OLHAS (44.380 ± 0.962mg/L) and OLICS (59.485 ± 0.827mg/L). The levels of the cadmium, lead and nickel in the three sites were above the regulatory limits. The gas chromatography flame ionization detector (GC-FID) profile revealed hydrocarbon contaminations with nC14 tetradecane > alpha xylene > nC9 nonane > acenaphthylene more enriched at OLPS. Structurally, the sediments metagenomes consisted of 43 phyla,75 classes each, 165, 161, 166 orders, 986, 927 and 866 bacterial genera and 1476, 1129, 1327 species from OLHAS, OLICS and OLPS, respectively. The dominant phyla in the sediments were Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi. The principal component ordination (PCO) showed that OLPS microbial community had a total variance of 87.7% PCO1, setting it apart from OLHAS and OLICS. OLICS and OLHAS were separated by PCO2 accounting for 12.3% variation, and the most polluted site is the OLPS.
Read full abstract