Krabbe disease (KD) is an autosomal recessive lysosomal storage disorder caused by loss-of-function mutations in the GALC gene, which encodes for the enzyme galactosylceramidase (GALC). GALC is crucial for myelin metabolism. Functional deficiency of GALC leads to toxic accumulation of psychosine, dysfunction and death of oligodendrocytes, and eventual brain demyelination. To date, 46 clinically-relevant, pathogenic GALC missense mutations (MMs) have been identified in KD patients. These MMs are present in ∼70% of KD cases reported over 8 published studies between 1996 - 2019. However, the mechanisms by which these MMs lead to GALC functional deficiency and their correlations with clinical phenotype remain poorly understood. To address this, we generated a GALC -knockout human oligodendrocytic cell line (MO3.13/ GALC -KO) using CRISPR-Cas9 method to assess GALC function and GALC secretion. We evaluated 5 polymorphic and 31 clinically-relevant MM variants (MMVs) using transient expression assays. Our results showed that 26 MMVs, including 10 co-variants with p.I562T, reduced GALC activity by 92% - 100% compared to wild-type GALC (WT-GALC). MMVs from infantile-onset KD patients produced < 2% of WT activity, whereas those associated with juvenile- and adult-onset cases retained up to 7% of WT activity. Residual GALC activity was correlated with mature, lysosomal GALC protein levels (Pearson r = 0.93, P<0.0001). Many low-activity MMVs did not correspondingly impair GALC secretion. Twenty-one of the 26 low-activity MMVs showed a 21% - 100% reduction in sec-GALC levels, indicating varying degrees of GALC mis-trafficking among these variants. Importantly, GALC activity among MMVs strongly correlates with clinical disease severity, based on the age of symptom onset in patients with either homozygous MM (Pearson r = 0.98, P<0.0001, n = 7) or compound heterozygous (Pearson r = 0.94, P<0.0001, n = 12) MM-null mutation genotypes. Thus, our data suggests that GALC activity could serve as a prognostic disease indicator under specific experimental conditions. We further investigated the impact of pathogenic MMVs on psychosine accumulation, a key biomarker for KD. Psychosine levels were 21-fold higher in mock control cells compared to WT-GALC transfected cells (mock = 0.349 pmol/mg, WT-GALC = 0.016 pmol/mg), but negatively correlated with GALC activity among pathogenic MMVs (Pearson r = -0.63, P < 0.01, n = 15). Although psychosine levels were higher in most MMVs associated with infantile-onset KD, no significant correlations with clinical onset were detected. Overall, our study provides a comprehensive quantitative analysis of the functional deficits and mis-trafficking associated with clinically-relevant GALC MMVs, enhancing our understanding of the molecular genetics and genotype-phenotype correlations of the GALC gene in Krabbe disease.