Through biological productivity and ocean-atmosphere CO2 exchange, North Pacific mid-depth ventilation has the potential to regulate regional climate over glacial timescales. Nevertheless, the subtropical Northwest Pacific currently lacks continuous long redox records that would enable us to evaluate this process. In this instance, we present δ98/95Mo and redox-sensitive trace element data derived from Okinawa Trough sediments to reconstruct redox conditions and assess their possible significance in regulating atmospheric CO2 in the subtropical Northwest Pacific over the last 200 k.y. Enhanced oxic conditions induced by a strengthened Kuroshio Current during Marine Isotope Stage (MIS) 1 suggest the presence of enhanced deep water ventilation and upwelling in the Okinawa Trough, which likely contributed to high atmospheric CO2 concentrations during interglacial periods. The Okinawa Trough may have been oxic and served as a regional net carbon sink during MIS2 and MIS6, due to glacial North Pacific Intermediate Water (GNPIW) and a weak Kuroshio Current. During interglacials, high productivity brought on by the stronger East Asian Summer Monsoon (EASM) leads to an increase in organic matter burial and oxygen consumption. This substantial positive excursion in δ98/95Mo values during MIS4 and early MIS3 can be linked to the anaerobic oxidation of methane (AOM) and the release of methane-rich fluids from methane hydrate decomposition. Our findings highlight potential links between higher upwelling, GNPIW expansion, and the underlying processes regulating the atmospheric CO2 budget in the subtropical North Pacific during the late Quaternary.
Read full abstract