Manganese hydroxido (Mn–OH) complexes supported by a tripodal N,N′,N″-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido) ([poat]3−) ligand have been synthesized and characterized by spectroscopic techniques including UV–vis and electron paramagnetic resonance (EPR) spectroscopies. X-ray diffraction (XRD) methods were used to confirm the solid-state molecular structures of {Na2[MnIIpoat(OH)]}2 and {Na[MnIIIpoat(OH)]}2 as clusters that are linked by the electrostatic interactions between the sodium counterions and the oxygen atom of the ligated hydroxido unit and the phosphinic (P=O) amide groups of [poat]3−. Both clusters feature two independent monoanionic fragments in which each contains a trigonal bipyramidal Mn center that is comprised of three equatorial deprotonated amide nitrogen atoms, an apical tertiary amine, and an axial hydroxido ligand. XRD analyses of {Na[MnIIIpoat(OH)]}2 also showed an intramolecular hydrogen bonding interaction between the MnIII–OH unit and P=O group of [poat]3−. Crystalline {Na[MnIIIpoat(OH)]}2 remains as clusters with Na+---O interactions in solution and is unreactive toward external substrates. However, conductivity studies indicated that [MnIIIpoat(OH)]− generated in situ is monomeric and reactivity studies found that it is capable of cleaving C-H bonds, illustrating the importance of solution-phase speciation and its direct effect on chemical reactivity.Synopsis: Manganese–hydroxido complexes were synthesized to study the influence of H-bonds in the secondary coordination sphere and their effects on the oxidative cleavage of substrates containing C-H bonds.