AbstractAlthough seismic and stratigraphic well information put tight constraints on rift basin evolution, eroded rift shoulders commonly expose polydeformed prerift basement whose deformation history may be difficult to constrain. In this work, we apply K‐Ar dating of fault gouge samples from 18 faults to explore the brittle deformation of the well‐exposed eastern rift margin to the northern North Sea rift. We find evidence of clay gouge formation since the Late Devonian, with distinct Permian and Jurassic fault activity peaks that closely match early stages of the two well‐established North Sea rift phases. A marked decay in fault density away from the rift margin confirms a close relationship between rifting and onshore faulting. The results show that initial rift‐related extension affected a much wider area than the resulting offshore rift. Hence our data support a rift model where strain is initially distributed over a several 100 km wide region, as a prelude to the development of the ~150–200 km wide Permo‐Triassic northern North Sea rift as defined by large marginal faults. Towards the end of the second rift phase, strain localises even more strongly to the 25–50 km wide Viking Graben. Interestingly, a period of early widespread extension is seen for both phases of North Sea rifting and may be a general characteristic of continental rifting. The documented prerift faulting and fracturing of the basement since the Devonian weakened the basement and probably facilitated the widespread initial extension that subsequently localised to form the northern North Sea rift, with further localisation to its relatively narrow central part (Viking Graben).