Oceanic Anoxic Event 2 (OAE2), occurring at the Cenomanian-Turonian boundary (CTB; 93.9 Ma), is a representative global event of carbon cycling fluctuations and transient climate anomalies. OAE2 was initially discovered and intensively studied in the trans-Atlantic and western Tethys Oceans; however, research on the eastern Tethys Ocean, especially the vast northern regions, is inadequate. Further, there is still considerable controversy regarding the triggering mechanisms and early environmental changes of OAE2. In this study, we present high-resolution carbonate carbon isotopes (δ13Ccarb), total organic carbon, and mercury (Hg) concentration records from the northern part of the eastern Tethys Ocean during the OAE2 interval, sampled at the ZK20-1 drillcore section of the Kukebai Formation in the western Tarim Basin, China. Following the global classification scheme for carbon isotope excursion (CIE) at the CTB, the carbon isotope change curve of this study is classified into six stages (C1-C6), and three substages (C3a, C3b, C3c) in the C3 stage. Sedimentary features reveal a short-term sea-level regression in the Tarim Basin during the onset stage (C2) of OAE2, which likely involved vast regions of the eastern Tethys Ocean and even the Pacific region. The mercury (Hg) concentration data reveal increasing Hg levels in the lower part of the Kukebai Formation, mainly corresponding to the onset stage (C3) of the OAE2, but it is significantly lower than that in other typical volcanogenic Hg anomalies. We preliminarily speculated that the intensified wildfire activity at the onset stage of OAE2 potentially accelerate the Hg extracted from the terrestrial soil or organic matter into the offshore area. This is also supported by the evidence of wildfire and Hg anomalies from the Western Interior Seaway (WIS) of North America.
Read full abstract