In the current environment of climate change, the precipitation situation of marine islands is particularly valued. So, this study explores precipitation characteristics and mechanisms over Sri Lanka in the background of the western Indian Ocean using satellite and reanalysis datasets based on 40 years (from 1981 to 2020). The results show that the highest precipitation occurs between October and December, accounting for 46.3% of the entire year. The Indian Ocean sea surface temperature warming after 2002 significantly influences precipitation patterns. Particularly during the Second Inter-Monsoon, the western Indian Ocean warming induces an east–west zonal sea surface temperature gradient, leading to low-level circulation and westerly wind anomalies. This, in turn, results in increased precipitation in Sri Lanka between October and December. This study used the Trend-Free Pre-Whitening Mann–Kendall test and Sen’s slope estimator to study nine extreme precipitation indices, identifying a significant upward trend in extreme precipitation events in the Jaffna, arid northern Sri Lanka, peaking on 9 November 2021. This extreme event is due to the influence of weather systems like the Siberian High and intense convective activities, transporting substantial moisture to Jaffna from the Indian Ocean, the Arabian Sea, and the Bay of Bengal during winter. The findings highlight the impact of sea surface temperature warming anomalies in the western Indian Ocean and extreme precipitation events, anticipated to be more accentuated during Sri Lanka’s monsoon season. This research provides valuable insights into the variability of tropical precipitation, offering a scientific basis for the sustainable development of marine islands.
Read full abstract