Long-term nationwide atmospheric monitoring of organochlorine pesticides (OCPs) was performed in South Korea during 2008–2017. Their occurrences, seasonal and temporal variability, sources, and effect of ambient temperature were investigated. The OCPs are pronounced with a mean concentration of total OCPs ranging from 5.2 to 256 pg/Sm3. However, a decrease of 54 % was observed in the mean concentration of total OCPs from 2008 to 2017 associated with regulatory actions. OCP concentrations did not show any variations between the different site types, and OCPs were ubiquitously present at all site types. The mean concentration of total OCPs in summer was two-fold higher than in winter. The concentrations of DRINs, DDTs, ENDOs, and HCHs were significantly higher in summer, but the concentrations of chlordane and heptachlor were higher in winter. The diagnostic ratios identified major sources as ongoing sources, past use, and atmospheric transport. Clausius Clapeyron plots strongly suggested the re-emission of α-endosulfan, β-endosulfan, α-HCH, and β-HCH, and ΔHsa (enthalpy of surface air exchange) values suggested the influence of the transport and/or new sources on aldrin, dieldrin, and chlordane. The occurrence of OCPs due to re-emissions, ongoing sources, and long-range atmospheric transport could be a challenge towards the complete phase-out of OCPs in South Korea.