A self-consistent field method is presented within density matrix functional theory. The computational cost for a correlated many-electron calculation is reduced to that of the self-consistent-field Hartree-Fock method, while the accuracy still reaches that of sophisticated configuration interaction based methods. In this method, the two-electron cumulant energy is measured with an information entropy associated with the Fermi-Dirac distribution of the occupation numbers. An eigenvalue equation for the orbitals is obtained, with the eigenvalues (orbital energies) connected to the occupation numbers through the Fermi-Dirac distribution. The occupation numbers for the strongly occupied orbitals are very close to the natural orbital occupation numbers from wave function methods. It covers in a single scheme the nondynamical correlation in weak or breaking bonds as well as the dynamical correlation at all distances. The method is well suited to large-scale potential energy surface calculation and molecular dynamics simulation.
Read full abstract