Nowadays, moving object detection in sequence images has become a hot topic in computer vision research, and has a very wide range of practical applications in many fields of military and daily life. In this paper, fast detection of moving objects in complex background is studied, and fast detection methods for moving objects in static and dynamic scenes are proposed respectively. Firstly, based on image preprocessing, aiming at the difficulty of feature extraction of moving targets in low illumination at night, Gamma change is used to process. Secondly, for the fast detection of moving objects in static scenes, this paper designs a detection method combining background difference and edge frame difference. Finally, aiming at the fast detection of moving objects in dynamic scenes, a feature matching detection method based on the SIFT algorithm is designed in this paper. Simulation experiments show that the method designed in this paper has good detection performance.