The achievement of rapid and reliable image object tracking has long been crucial and challenging for the advancement of image-guided technology. This study investigates real-time object tracking by offering an image target based on nuclear correlation tracking and detection methods to address the challenge of real-time target tracking in complicated environments. In the tracking process, the nuclear-related tracking algorithm can effectively balance the tracking performance and running speed. However, the target tracking process also faces challenges such as model drift, the inability to handle target scale transformation, and target length. In order to propose a solution, this work is organized around the following main points: this study dedicates its first part to the research on kernelized correlation filters (KCFs), encompassing model training, object identification, and a dense sampling strategy based on a circulant matrix. This work developed a scale pyramid searching approach to address the shortcoming that a KCF cannot forecast the target scale. The tracker was expanded in two stages: the first stage output the target's two-dimensional coordinate location, and the second stage created the scale pyramid to identify the optimal target scale. Experiments show that this approach is capable of resolving the target size variation problem. The second part improved the KCF in two ways to meet the demands of a long-term object tracking task. This article introduces the initial object model, which effectively suppresses model drift. Secondly, an object detection module is implemented, and if the tracking module fails, the algorithm is redirected to the object detection module. The target detection module utilizes two detectors, a variance classifier and a KCF. Finally, this work includes trials on object tracking experiments and subsequent analysis of the results. Initially, this research provides a tracking algorithm assessment system, including an assessment methodology and the collection of test videos, which helped us to determine that the suggested technique outperforms the KCF tracking method. Additionally, the implementation of an evaluation system allows for an objective comparison of the proposed algorithm with other prominent tracking methods. We found that the suggested method outperforms others in terms of its accuracy and resilience.