Implementations of object-oriented programming languages associate type information with each object to perform various runtime tasks such as dynamic dispatch, type introspection, and reflection. A common means of storing such relation is by inserting a pointer to the associated type information into every object. Such an approach, however, introduces memory and performance overheads when compared with non-object-oriented languages. Recent 64-bit computer architectures have added support for tagged pointers by ignoring a number of bits - tag - of memory addresses during memory access operations and utilize them for other purposes; mainly security. This paper presents the first investigation into how this hardware support can be exploited by a Java Virtual Machine to remove type information from objects. Moreover, we propose novel hardware extensions to the address generation and load-store units to achieve low-overhead type information retrieval and tagged object pointers compression-decompression. The evaluation has been conducted after integrating the Maxine VM and the ZSim microarchitectural simulator. The results, across all the DaCapo benchmark suite, pseudo-SPECjbb2005, SLAMBench and GraphChi-PR executed to completion, show up to 26 and 10 percent geometric mean heap space savings, up to 50 and 12 percent geometric mean dynamic DRAM energy reduction, and up to 49 and 3 percent geometric mean execution time reduction with no significant performance regressions.