Abstract We have quantified the impacts of varying thermodynamic environments on tropical congestus and cumulonimbus clouds (CCCs) within maritime tropical regions. To elucidate this relationship, we employed the Regional Atmospheric Modeling System (RAMS) to conduct high-resolution (1 km) simulations of convection over the Philippine Archipelago for a month-long period in 2019. We subsequently performed a cloud-object-based analysis, identifying and tracking hundreds of thousands of individual CCCs using the Tracking and Object-Based Analysis of Clouds (tobac) tracking library. Using this object-oriented dataset of tracked cells, we examined differences in individual storm strength, organization, and morphology due to the storm’s initial environment. We found that storm strength, defined here as maximum midlevel updraft velocity, was controlled primarily by convective available potential energy (CAPE) and precipitable water (PW); high CAPE (>2500 J kg−1) and high (approximately 63 mm) PW were both required for midlevel CCC updraft velocities to reach at least 10 m s−1. Of the CCCs with the most vigorous updrafts, 80.9% were also in the upper tercile of precipitation rates, with the strongest precipitation rates requiring even higher PW. Further, we found that vertical wind shear was the primary differentiator between organized and isolated convective storms. Within the set of organized storms, linearly oriented CCC systems have significantly weaker vertical wind shear than nonlinear CCCs in low- (0–1, 0–3 km) and midlevels (0–5, 2–7 km). Overall, these results provide new insights into the environmental conditions determining the CCC properties in maritime tropical regions.
Read full abstract