Alkali metals at the A site, coupled with rare earth transition metals featuring partly filled 4f and d orbitals at B and B’ sites in A2BB’O6 structure of double perovskites, induce complex d-f electron interactions. Present study explores the rare earth-based double perovskites Ba2NdNbO6 and Ba2NdTaO6, investigating their structural, optoelectronic, magnetic, and thermoelectric characteristics using first principles method. Computational analyses confirm the stable cubic symmetry and ferromagnetic ground state of both compounds. Negative formation enthalpies underline their thermodynamic stability. Spin polarized electronic band structures reveal direct–indirect degeneracy near the Fermi level, dominated by Nd-4f electrons. Optical investigations indicate absorption onset edges at 4.0 eV and significant absorbance peaks in the 6–10 eV range. Furthermore, the investigation into thermoelectric figure of merit reveals capability of Ba2NdNbO6 and Ba2NdTaO6 to efficiently convert heat energy in thermoelectric devices. These findings provide information for potential applications of investigated compounds in thermoelectric (TE) and optoelectronic devices; e.g., in optical absorbers, TE coolers and generators, and photonic devices.