The analysis on mechanical properties of ice-composite focus on three aspects. The first is the novelty of the material. As an ice composite, the selection and placement of different fibres will have a crucial impact on the material and properties of the composite. Regarding the type of fibre,10 groups of controlled experiments are designed totally with materials commonly used in daily life, with three samples in each group and 33 samples in total. The fillers include cloth of socks, polyester fibre plastic bags (hard, soft, garbage sorting bags), pulp, hemp ropes, nylon ropes, non-woven fabrics, bamboo fibre, and the mask material applied in preventing COVID-19 specially. Considering that in most cases, the mask is a one-off, it is also creatively thought of using disinfected waste masks as reinforcement material for the ice-composite to reduce the waste of recyclable materials. Considering that disposable masks commonly used in this scheme usually consist of an inner and outer layer, as shown in the figure. The applicability of these two fibres was investigated by adding these materials prepared by the inner and outer layers of masks into the Ice-composite. In order to systematically study the influence of different variables on ice composites, different control groups in four directions are set: fibre type, fibre content, fibre length, and fibre orientation. For each control group, more than 2 types of materials were tested and relevant parameters were analysed according to the results. In addition, as a result of the experiment environment to room temperature, and in the process of operation, hands and other body parts contact could accelerate the melting of the ice, leading to the change of the sample properties. To conquer this problem, a blank control group which contains only ice at room temperature is set to make a comparison and provide a standard for determining the improvement of fibre added ice-composite. (The parameters measured in this sample will be used as correction factors in the experiment so that the real properties of the resulting ice composite can be measured.) Considering the influence of fibre orientation on material properties, an extra control group for the same kind of materials is set: one group is stirred evenly with the matrix, and the other group is placed vertically along the direction of the box. In terms of testing, the mechanical properties of the products are mainly tested, including Stiffness Properties, Elastic property. Three related physical properties, the elastic modulus E, the shear modulus G, and the Poisson’s ratio V, are measured to evaluate. Tensile and compressive strength in X, Y, and Z directions are also considered. In particular, different evaluation systems are established for uniform and multilayer unidirectional composite (longitudinal). In addition, a series of properties, such as bend strength, impact strength, and fracture toughness are measured. Considering the limits of daily measuring instruments, the melting of ice in the operation process affects the measurement of normal strain and the fact that the strain of ice composite material is relatively small, it is creatively thought to use a laser pointer and cosmetic mirror which are common in the multimedia classroom of the university campus to magnify the tiny deformation to facilitate measurement. In terms of the result presentation, it is tried to use broken line charts to show the correlation between various variables and material properties. Finally, the error sources existing in the experiment has been summarized and some improvement plans are proposed according to the existing problems of this experiment.