A critical issue facing extraterrestrial expansion has always been long-term life support capabilities. The large energy requirements to move even small amounts of material from Earth necessitate the ability to reuse and recycle as much as possible, particularly waste. The weight of food supplies eventually starts to limit the length of the expedition. Hydroponic growth systems offer the ability to grow plants, and with them, a miniature ecosystem. This offers the ability to repurpose both carbon dioxide and waste salts such as ammonia and other compounds, such as those found in urine. A major issue facing hydroponic systems is the need to provide a stable water-based nutrient stream. Direct contact membrane distillation (DCMD) was tested for viability as a method of re-concentrating and stabilizing the nutrient-rich water stream. Polytetrafluoroethylene (PTFE)- and polyvinylidene (PVDF)-based polymer hydrophobic membranes were used to separate solutes from water. The DCMD method was tested with the feed stream operating at temperatures of 50 °C, 65 °C, and 80 °C. The results were analyzed using UV-Visible spectroscopy to determine concentrations. The benefits and limitations of the PTFE and PVDF membranes in DCMD were compared. The larger-pore PTFE membranes concentrated solutions effectively at 80 °C, while the PVDF membranes removed more water at lower temperatures, but permitted detectable phosphate ion leakage. Adjusting temperature and flow rates can help maintain stable ion and water transfer, benefiting hydroponic systems in achieving reliable nutrient levels.
Read full abstract