Treatment of septic tank wastewater (STWW) with high concentrations of ammonium (NH4+) and total phosphorus (TP), is challenging in decentralized areas. Utilizing microalgae for STWW treatment can simultaneously recover nutrients in the form of high-value microalgal biomass. However, despite the potential benefits, microalgal treatment of STWW is rarely reported. Therefore, this work utilized bench-scale photobioreactors (PBR) to investigate different factors that could affect microalgal cultivation in STWW and treatment efficiency. Accordingly, it was observed that suspended solids present in STWW did not significantly affect the microalgae growth and nutrient removal efficiencies in bubble column PBR. On the other hand, the effect of endemic microorganism could not be verified in this study due to observed fungal contamination and change in nutrient profile of STWW after autoclave. Nevertheless, the highest microalgal growth and nutrient removal efficiencies of NH4+-N = 79.14% and TP = 41.11% were observed within 14 days of photoautotrophic cultivation in raw STWW. Further, 25 days of upscaled photoautotrophic cultivation in 4-L bubble column PBR was performed to study biomass yield, nutrient removal kinetics, and nutrient removal efficiency. Consequently, 0.75 g‧L−1 dry biomass was produced with improved removal efficiency of NH4+-N (96.16%), and TP (69.57%). Elemental analysis of biomass revealed that 62.99 ± 1.46 mg‧L−1 TN and 11.41 ± 1.42 mg‧L−1 TP were recovered. Further, 1.02 geq carbon dioxide (CO2) was bio-fixed with every liter of STWW treated. The findings of this study revealed that microalgae can be successfully utilized for the removal and recovery of nutrients from STWW.
Read full abstract