Stimuli-responsive optical hydrogels are widely used in various fields including environmental sensing, optical encryption, and intelligent display manufacturing. However, these hydrogels are susceptible to water losses when exposed to air, leading to structural damage, significantly shortened service lives, and compromised durability. This study presents mechanically robust, environmentally stable, and multi-stimuli responsive optical organohydrogel fibers with customizable iridescent colors. These fibers are fabricated by incorporating tunicate cellulose nanocrystals, alginate, and acrylamide in a glycerol-water binary system. The synthesized fibers exhibit high strength (1.38 MPa), moisture retention capabilities, and elastic properties. Furthermore, a sensor based on these fibers demonstrates high- and low-temperature resistance along with stimuli-responsive characteristics, effectively detecting changes in environmental humidity and strains. Moreover, the fiber sensor demonstrates continuous, repeatable, and quantitatively predictable moisture discoloration responses across a humidity range of 11 % and 98 %. During strain sensing, the optical-organohydrogel-based sensor demonstrates a large working strain (50 %) and excellent cycling stability, underscoring its potential for effectively monitoring a wide range of intricate human motions. Overall, the synthesized fibers and their simple fabrication method can elicit new avenues for numerous related applications including the large-scale implementation of advanced wearable technology.