The Mongolian Plateau hosts one of the world's most fragile ecosystems, characterized by high volatility and frequent natural disasters due to rapid climate change and human activities in recent decades. Frequent dust storms notably mark spring in this region. Through observational analysis and numerical modeling, this study investigates the impacts of comprehensive ocean and land processes—including sea surface temperature (SST) in the North Atlantic and Pacific Oceans, as well as Eurasian land conditions—on the interannual fluctuations of spring precipitation in the Mongolian Plateau (SPMP) from 1979 to 2020. The ocean-land processes involve: a tripole pattern of North Atlantic SST anomalies triggers an eastward-propagating continental-scale wave train; Increased snow cover in Central Asia induces significant anomalous low pressure through the albedo effect; El Niño-Southern Oscillation initiate a teleconnection pattern over the upstream region of the Indian-western Pacific Ocean. These anomalous ocean and land conditions interact with large-scale atmospheric circulations, altering dynamical and hydrological conditions around the Mongolian Plateau, thereby contributing to SPMP variation. Further corroboration from numerical model experiments supports the observational analysis results. The combined effects of multiple ocean-land factors effectively explain precipitation variability across extensive areas of the Mongolian Plateau. A regression model constructed using these land-ocean factors captures the time evolution of the SPMP well.
Read full abstract