The optical absorptions of an exciton with the higher excited states in a disc-like quantum dot are investigated. Calculations are made by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. With typical semiconducting GaAs based materials, the linear, third-order nonlinear, total optical absorption coefficients and refractive index changes have been calculated for the s–p, p–d, and d–f transitions. The results show that as the angular momentum quantum number of transitions increases, the absorption peaks shift towards lower energies and the absorption intensities increase.
Read full abstract