Bipolar psychometric scales data are widely used in psychologic healthcare. Adequate psychological profiling benefits patients and saves time and costs. Grant funding depends on the quality of psychotherapeutic measures. Bipolar Likert scales yield compositional data because any order of magnitude of agreement towards an item assertion implies a complementary order of magnitude of disagreement. Using an isometric log-ratio (ilr) transformation the bivariate information can be transformed towards the real valued interval scale yielding unbiased statistical results increasing the statistical power of the Pearson correlation significance test if the Central Limit Theorem (CLT) of statistics is satisfied. In practice, however, the applicability of the CLT depends on the number of summands (i.e., the number of items) and the variance of the data generating process (DGP) of the ilr transformed data. Via simulation we provide evidence that the ilr approach also works satisfactory if the CLT is violated. That is, the ilr approach is robust towards extremely large or infinite variances of the underlying DGP increasing the statistical power of the correlation test. The study generalizes former results pointing out the universality and reliability of the ilr approach in psychometric big data analysis affecting psychometric health economics, patient welfare, grant funding, economic decision making and profits.
Read full abstract