An abdominal aortic aneurysm (AAA) is a dilation of the aorta over its normal diameter (> 3 cm). The minimally invasive treatment adopted uses a stent graft to be deployed into the aneurysm by a catheter to flow blood through it. However, this approach demands frequent monitoring using imaging modalities that involve radiation and contrast agents. Moreover, the multiple follow-ups are expensive, time-consuming, and resource-demanding for healthcare systems. This study proposes a novel wireless implantable medical sensor (WIMS) to measure the aneurysm growth after the endovascular repair. The proposed sensor is composed of a Z-shaped inductor, similar to a stent ring. The proposed design of the sensor is explored by investigating the inductance, resistance, and quality factor of different possible geometries related to a Z-shaped configuration, such as the height and number of struts. The study is conducted through a combination of numerical simulations and experimental tests, with the assessment being carried out at a frequency of 13.56 MHz. The results show that a higher number of struts result in higher values of inductance and resistance. On the other hand, the increase in the number of struts decreases the quality factor of the Z-shaped inductor due to the presence of high resistance from the inductor. Moreover, it is observed that the influence of the number of struts present in the Z-shaped inductor tends to decrease for larger radii. The numerical and experimental evaluation concludes the ability of the proposed sensor to measure the size of the aneurysm.
Read full abstract