As the key component of the primary circuit of a lead-cooled fast reactor (LFR), the hydraulic performance and the internal flow characteristics of the main coolant pump (MCP) are significantly important to the long-term safe and efficient operation of LFR. The present study reports an experimental and numerical investigation of the hydraulic performance and the internal flow characteristics of a centrifugal pump, which is considered one of the candidates for the MCP in LFR. Based on the experimental platform of Liquid Metal-Supercritical Fluid coupled heat transfer (LMSF) of Xi’an Jiaotong University, the hydraulic performances of a centrifugal pump like the pump head and its efficiency are studied and the measured data is also used to validate the accuracy of the numerical method which are employed to study the flow characteristics of MCP, as velocity, pressure, turbulent kinetic energy (TKE). The results show that the deviation of experimental and numerical simulation results is less than 5%. The high velocity region in the impeller channel is concentrated near the hub side of the blade inlet, and the significant pressure difference of the blade surface is primarily concentrated in the second half and shroud region. The inlet area of the blade exhibits a concentration of high TKE and the circular distribution of TKE within the impeller exhibits a periodic pattern, with its frequency being consistent with the number of blades.
Read full abstract