Video/cortical electroencephalography (EEG) is monitored to assess progressive severity of generalized tonic clonic seizures (GTCSs) in a transgenic mouse model of adult-onset epilepsy with increased death risk. The mice overexpress the brain derived neurotrophic factor (BDNF) in the forebrain under the calcium/calmodulin dependent protein kinase 2a (termed TgBDNF) and develop GTCSs in response to tail suspension/cage agitation stimulation at 3–4 months of age. With successive GTCSs (a total of 16 across 10 weeks of assessment), seizures became more severe as evidenced by increased duration of postictal generalized EEG suppression (PGES) associated with loss of posture/consciousness. Mice also developed spike wave discharges with behavioral arrest during the seizure recovery that increased in duration as a function of number of GTCSs. Overall seizure duration (from preictal spike to offset of PGES) and ictal spectral power (full spectra) were also increased. Half of the TgBDNF mice expired following a long period of PGES at the last recorded GTCS. Seizure-evoked general arousal impairment was associated with a striking decrease in total number of gigantocellular neurons of the brainstem nucleus pontis oralis along with increase in volumes of the anterior cingulate cortex and dorsal dentate gyrus in severely convulsive TgBDNF mice compared to litter-matched WT controls and non-convulsive TgBDNF mice. The latter effect was accompanied with an increase in total number of hippocampal granule neurons. These results provide structure-function associations in an animal model of adult-onset GTCSs that progressively increase in severity with clinical relevance for sudden unexpected death following generalized seizures.
Read full abstract