Class IIa histone deacetylases (HDACs) move between skeletal muscle fibre cytoplasm and nuclei in response to various stimuli, suppressing activity of the exclusively nuclear transcription factor Mef2. Protein kinase A (PKA) phosphorylates class IIa HDACs in cardiac muscle, resulting in HDAC nuclear accumulation, but this has not been examined in skeletal muscle. Using HDAC4-green fluorescent protein (HDAC4-GFP) expressed in isolated skeletal muscle fibres, we now show that activation of PKA by the beta-receptor agonist isoproterenol or dibutyryl (Db) cAMP causes a steady HDAC4-GFP nuclear influx. The beta-receptor blocker propranolol or PKA inhibitor Rp-cAMPS blocks the effects of isoproterenol on the nuclear influx of HDAC4-GFP, and Rp-cAMPS blocks the effects of Db cAMP. The HDAC4-GFP construct having serines 265 and 266 replaced with alanines, HDAC4 (S265/266A)-GFP, did not respond to beta-receptor or PKA activation. Immunoprecipitation results show that HDAC4-GFP is a substrate of PKA, but HDAC4 (S265/266A)-GFP is not, implicating HDAC4 serines 265/266 as the site(s) phosphorylated by PKA. During 10 Hz trains of muscle fibre electrical stimulation, the nuclear efflux rate of HDAC4-GFP, but not of HDAC4 (S265/266)-GFP, was decreased by PKA activation, directly demonstrating antagonism between the effects of fibre stimulation and beta-adrenergic activation of PKA on HDAC4 nuclear fluxes. 8-CPT, a specific activator of Epac, caused nuclear efflux of HDAC4-GFP, opposite to the effect of PKA. Db cAMP increased both phosphorylated PKA and GTP-bound Rap1. Our results demonstrate that the PKA and CaMKII pathways play important opposing roles in skeletal muscle gene expression by oppositely affecting the subcellular localization of HDAC4.