Class IIa histone deacetylases (HDACs) move between skeletal muscle fibre cytoplasm and nuclei in response to various stimuli, suppressing activity of the exclusively nuclear transcription factor Mef2. Protein kinase A (PKA) phosphorylates class IIa HDACs in cardiac muscle, resulting in HDAC nuclear accumulation, but this has not been examined in skeletal muscle. Using HDAC4-green fluorescent protein (HDAC4-GFP) expressed in isolated skeletal muscle fibres, we now show that activation of PKA by the beta-receptor agonist isoproterenol or dibutyryl (Db) cAMP causes a steady HDAC4-GFP nuclear influx. The beta-receptor blocker propranolol or PKA inhibitor Rp-cAMPS blocks the effects of isoproterenol on the nuclear influx of HDAC4-GFP, and Rp-cAMPS blocks the effects of Db cAMP. The HDAC4-GFP construct having serines 265 and 266 replaced with alanines, HDAC4 (S265/266A)-GFP, did not respond to beta-receptor or PKA activation. Immunoprecipitation results show that HDAC4-GFP is a substrate of PKA, but HDAC4 (S265/266A)-GFP is not, implicating HDAC4 serines 265/266 as the site(s) phosphorylated by PKA. During 10 Hz trains of muscle fibre electrical stimulation, the nuclear efflux rate of HDAC4-GFP, but not of HDAC4 (S265/266)-GFP, was decreased by PKA activation, directly demonstrating antagonism between the effects of fibre stimulation and beta-adrenergic activation of PKA on HDAC4 nuclear fluxes. 8-CPT, a specific activator of Epac, caused nuclear efflux of HDAC4-GFP, opposite to the effect of PKA. Db cAMP increased both phosphorylated PKA and GTP-bound Rap1. Our results demonstrate that the PKA and CaMKII pathways play important opposing roles in skeletal muscle gene expression by oppositely affecting the subcellular localization of HDAC4.
Read full abstract