This article implements a numerical method for the minimization under constraints of a discrete energy modelling multicomponents rotating Bose–Einstein condensates in the regime of strong confinement and with rotation. Moreover, this method allows to consider both segregation and coexistence regimes between the components. The method includes a discretization of a continuous energy in space dimension 2 and a gradient algorithm with adaptive time step and projection for the minimization. It is well known that, depending on the regime, the minimizers may display different structures, sometimes with vorticity (from singly quantized vortices, to vortex sheets and giant holes). The goal of this paper is to study numerically the structures of the minimizers. In order to do so, we introduce a numerical algorithm for the computation of the indices of the vortices, as well as an algorithm for the computation of the indices of vortex sheets. Several computations are carried out, to illustrate the efficiency of the method, to cover different physical cases, to validate recent theoretical results as well as to support conjectures. Moreover, we compare this method with an alternative method from the literature.