The frequent occurrence of hitherto unknown phase Pre-θ'-2 and unusual 1.5 cθ' thick θ' precipitate was observed by atomic-resolution scanning transmission electron microscopy in the well-studied Al-Cu alloys. This phenomenon is associated with heterogeneous precipitate nucleation and growth on pre-existing dislocations introduced by slight deformation prior to aging. In this study, the precise structure details of Pre-θ'-2 was determined by atomic scale imaging, image simulation based on image forming theories and first principle calculations. Pre-θ'-2 has a well-defined ordered structure sandwiched between two 2aAl (∼1.5cθ') spaced Cu layers on {200}Al planes. The strong structural similarities between Pre-θ'-2 and 1.5 cθ' thick θ' in terms of interfacial structure and thickness, coupled with energetic calculations and preliminary in-situ observations, lead us to propose a new precipitation path toward key strengthening phase θ'.