We previously proposed a dynamic scaffold model for inner nuclear structure formation. In this model, structures in inter-chromatin regions are maintained through dynamic interaction of protein complex modules, and WD repeat- and disordered region-rich proteins and others act as scaffolds for these protein complexes. In this study, three WD-repeat proteins, i.e., CIRH1A, UTP15, and WDR43, were found in the nuclear matrix fraction and speculated to be present in the human t-UTP sub-complex of SSU processomes. The results obtained as to their subnuclear localization, binding with each other, mobilities, and phosphorylation were: (i) the majority of these proteins fused with GFP are localized to the fibrillar center region in nucleoli. (ii) these 3 proteins bind directly with each other in vitro. (iii) the movement of these proteins is very slow in living cells and independent of rDNA transcription. (iv) His-CIRH1A is phosphorylated at Thr(131) by a mitotic Xenopus egg extract, and binding with GST-UTP15 and GST-WDR43 is suppressed. These findings and others suggest that these 3 WD proteins found in the matrix fraction bind directly with each other, bind tightly to fibrillar center regions, and comprise a part of the nucleolar structure. These results are also consistent with our dynamic scaffold model.
Read full abstract