Ionic liquid (IL) mixtures have been proposed as a viable alternative to rationally fine-tune the physicochemical properties of ILs for a variety of applications. The understanding of the effects of mixing ILs on the properties of the mixtures is however only in the very early stages. Two series of ionic liquid mixtures, based on the 1-ethyl-3-methylimidazolium and 1-dodecyl-3-methylimidazolium cations, and having a common anion (tetrafluoroborate or bis(trifluoromethylsulfonyl)imide), have been prepared and deeply characterized via multiple NMR techniques. Diffusion and relaxation methods combined with 2D ion–ion correlation (nuclear Overhauser enhancement) experiments have been used for a better understanding of the interplay between dynamics and structure of IL mixtures. A crucial role of the anion in driving the mixture’s behavior emerged, making them important “dynamic probes” for gaining information of the polar and nonpolar regions of ionic liquids and their mixtures.
Read full abstract