The origin of nuclear magnetic shielding in diamagnetic molecules is discussed, pointing out various contributions to the shielding from electrons and the effects of intra- and intermolecular interactions. In NMR practice, chemical shifts are determined first as the measure of shielding in observed samples. The descriptions of shielding and chemical shifts are not fully consistent. Gas phase studies permit the withdrawal of intermolecular contributions from shielding and obtaining the magnetic shielding data in isolated molecules. The shielding determination in molecules is possible using at least three methods delivering the reference shielding standards for selected nuclei. The known shielding of one magnetic nucleus can be transferred to other nuclei if the appropriate nuclear magnetic moments are available with satisfactory accuracy. It is possible to determine the nuclear magnetic dipole moments using the most advanced ab initio shielding calculations jointly with the NMR frequencies measurements for small-sized isolated molecules. Helium-3 gas is postulated as all the molecules' primary and universal reference standard of shielding. It can be easily applied using common deuterium lock solvents as the secondary reference standards. The measurements of absolute shielding are available for everyone with the use of standard NMR spectrometers.
Read full abstract