To explore the mechanism of gypenoside XVII against cerebral ischemia/reperfusion (I/R) through nuclear factor erythroid 2-related factor 2/antioxidant responsive element (Nrf2/ARE) signaling pathway. Forty SPF Sprague Dawley (SD) rats were randomly divided into sham operated group, I/R model group, 25, 50 and 100 mg/kg gypenoside XVII groups (n = 8). Gypenoside XVII groups were administered 25, 50 or 100 mg/kg (0.01 mL/g) gypenoside XVII by intragastric administration for 14 days; the other two groups received the same dose of saline. Rat cerebral I/R model was established by modified line bolt method; rats in the sham operated group underwent the same procedure without producing substantial embolization. After 24 hours of reperfusion, the neurological deficit scores of the rats in each group were assessed. Rat abdominal aortic whole blood was collected and the serum reactive oxygen species (ROS), heme oxygenase-1 (HO-1), γ-glutamylcysteine synthase (γ-GCS), superoxide dismutase (SOD), quinone NADH oxidoreductase 1 (NQO1), and malondialdehyde (MDA) were detected. Then whole brain tissue was harvested and penumbra tissue was isolated from cerebral cortex, the general condition of rat brain tissue and the volume of cerebral infarction were evaluated, the histopathological changes in the brain were observed under light microscopy, the mRNA expressions of Nrf2 and Keap1 were measured by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR), the protein expressions of Nrf2 and Keap1 were determined by Western blotting. After 24 hours of reperfusion, compared with the sham operated group, the score of neurological deficit and infarct volume were significantly increased, the NQO1, SOD and γ-GCS levels in serum were significantly decreased, MDA, HO-1 and ROS levels in serum were significantly increased, the Nrf2 and Keap1 mRNA and protein expressions in the ischemic penumbra were significantly increased in rats from I/R model group. Compared with the I/R model group, the neurological deficit scores (1.50±0.53, 1.37±0.52 vs. 2.75±0.46) and brain infarct volume [(19.8±5.1)%, (21.4±6.4)% vs. (42.3±5.8)%] were significantly reduced, serum NQO1, SOD, HO-1 and γ-GCS were significantly increased [NQO1 (ng/L): 186.05±10.38, 220.75±16.22 vs. 131.36±5.95, SOD (kU/L): 63.23±5.30, 72.70±8.62 vs. 36.75±6.55, HO-1 (ng/L): 60.57±7.93, 60.35±4.72 vs. 42.72±4.95, γ-GCS (kU/L): 8.81±0.53, 8.72±0.69 vs. 6.80±0.56], serum MDA and ROS levels were significantly reduced [MDA (μmol/L): 5.94±0.66, 5.61±0.53 vs. 10.88±1.34, ROS (kU/L): 69.11±4.23, 67.12±4.52 vs. 104.43±7.54], the mRNA and protein expressions of Nrf2 and Keap1 in the ischemic penumbra were significantly increased in rats from 50 mg/kg and 100 mg/kg gypenoside XVII groups [Nrf2 mRNA (2-ΔΔCt): 1.90±0.13, 2.13±0.18 vs. 1.48±0.11, Keap1 mRNA (2-ΔΔCt): 1.78±0.11, 1.85±0.10 vs. 1.43±0.10, Nrf2/β-actin: 0.73±0.04, 0.79±0.03 vs. 0.60±0.03, Keap1/β-actin: 0.71±0.01, 0.76±0.03 vs. 0.61±0.01], all the comparative differences were statistically significant (all P < 0.01); 25 mg/kg gypenoside XVII had no significant effect. Gypenoside XVII (50 mg/kg and 100 mg/kg) may play a role in anti-cerebral I/R injury by regulating NQO1, SOD, HO-1, γ-GCS, ROS and MDA through Nrf2/ARE signaling pathway.
Read full abstract