Growth-promoting endophytic bacteria possess substantial potential for sustainable agriculture. Here, we isolated an endophytic bacterium, Pseudomonas sp. En3, from the leaf endosphere of Populus tomentosa and demonstrated its significant growth-promoting effects on both poplar and tomato seedlings. The phosphorus solubilization and nitrogen fixation abilities of strain En3 were confirmed via growth experiments on NBRIP and Ashby media, respectively. Salkowski staining and HPLC-MS/MS confirmed that En3 generated indole-3-acetic acid (IAA). The infiltration of En3 into leaf tissues of multiple plants did not induce discernible disease symptoms, and a successful replication of En3 was observed in both poplar and tobacco leaves. Combining Illumina and Nanopore sequencing data, we elucidated that En3 possesses a circular chromosome of 5.35 Mb, exhibiting an average G + C content of 60.45%. The multi-locus sequence analysis (MLSA) and genome average nucleotide identity (ANI) supported that En3 is a novel species of Pseudomonas and constitutes a distinct phylogenetic branch with P. rhizosphaerae and P. coleopterorum. En3 genome annotation analysis revealed the presence of genes associated with nitrogen fixation, phosphate solubilization, sulfur metabolism, siderophore biosynthesis, synthesis of IAA, and ethylene and salicylic acid modulation. The findings suggest that Pseudomonas sp. En3 exhibits significant potential as a biofertilizer for crop and tree cultivation.
Read full abstract