The aims of this study were to evaluate the feasibility of a nortriptyline (NT) formulation for transdermal administration and to assess the usefulness of an estimated kinetic parameter (kout) using the in vitro infinite dose technique to predict in vivo plasma levels when used in combination with pharmacokinetic parameters. To do so, a simple one-compartment model was used to describe the transport of a permeant across a membrane (skin). This model provides relatively simple expressions for the amount of permeant in the skin, the cumulative amount of permeant that crosses the skin, and the flux of permeant, for both the infinite and the finite dose regimens. Transdermal administration of the formulated NT gel to rats resulted in plasma levels of approximately 150 ng/mL between 8 and 30 h post-administration. These levels were higher than the minimum concentration of 40 ng/mL recommended for smoking cessation therapy and slightly higher than the upper limit of the therapeutic range for the treatment of depression in humans. The one-compartment model used to describe transport across the skin was connected to a two-compartment pharmacokinetic model used to predict NT plasma concentrations in rats using the kout determined in vitro and the values of other pharmacokinetic parameters obtained in vivo. The predicted concentrations were close to the observed plasma levels and the time profiles were similar for both types of data. These results show the usefulness of the kout parameter determined in vitro to predict plasma concentrations of drugs administered percutaneously.
Read full abstract