Despite being the first closterovirus documented in grapevines (Vitis sp.), the molecular biology of Grapevine leafroll-associated virus 1 (GLRaV-1, genus Ampelovirus, family Closteroviridae) is still in its infancy. In this study, the complete genome sequence of two GLRaV-1 isolates was determined to be 18,731 (isolate WA-CH) and 18,946 (isolate WA-PN) nucleotides (nt). The genome of WA-CH and WA-PN isolates encodes nine putative open reading frames (ORFs) and the arrangement of these ORFs in both isolates was similar to that of Australian and Canadian isolates. In addition to two divergent copies of the coat protein (CP), the genome of GLRaV-1 isolates contain CP-homologous domain in four genes, making the virus unique among Closteroviridae members. The 5' and 3' nontranslated regions (NTRs) of WA-CH and WA-PN isolates showed differences in size and sequence composition, with 5' NTR having variable number of ∼65-nt-long repeats. Using the 5' NTR sequences, a reverse transcription-polymerase chain reaction and restriction fragment length polymorphism method was developed to distinguish GLRaV-1 variants in vineyards. Northern analysis of total RNA from GLRaV-1-infected grapevine samples revealed three subgenomic RNAs (sgRNAs), corresponding tentatively to CP, p21, and p24 ORFs, present at higher levels, with p24 sgRNA observed at relatively higher abundance than the other two sgRNAs. The 5' terminus of sgRNAs corresponding to CP, CPd1, CPd2, p21, and p24 were mapped to the virus genome and the leader sequence for these five sgRNAs determined to be 68, 27, 15, 49, and 18 nt, respectively. Taken together, this study provided a foundation for further elucidation of the comparative molecular biology of closteroviruses infecting grapevines.
Read full abstract