The industry is continuously challenged to improve the efficiency and safety of operations. This is evident over the last 30 years in the development and improvement of measurements acquired while drilling. However, this has, in general, until now not been applied to well integrity measurements such as casing integrity and cement evaluation, which have traditionally been acquired utilizing wireline deployment. This paper will show the results of a new drillpipe-deployed tool that can be run in parallel with existing well operations. The results from two differing North Sea wells will be compared to traditionally acquired wireline-deployed tools and will demonstrate that these measurements and the resultant interpretation can successfully be acquired on drillpipe. This allows for much improved efficiency of operations and, in fact, the ability to acquire this important data in well conditions and environments where it is difficult or, in some cases, impossible to log with conventional wireline techniques. Two wells were selected with different degrees of difficulty in terms of measurement acquisition and showing different well trajectories and mud types. Both wells were logged with both the new drillpipe-deployed technology and traditional wireline technology, allowing a direct comparison of the techniques and tools and paving the way for acceptance of the new drillpipe-conveyed technology. The new drillpipe-conveyed tool can be run anytime drillpipe is utilized in the well. A radial distribution of ultrasonic transducers arranged on the circumference of a drill collar allows for full azimuthal interpretation of the casing and cement while rotating the drillpipe. Analysis of the acquired data allows for the interpretation of caliper thickness and an evaluation of the material in the annular space behind the casing. In addition, the tool can provide casing collar location in real time and has the ability to orient downhole devices such as whipstocks, perforating guns, and oriented cutters. The two well examples conclusively demonstrate that the tool can be run in parallel with existing operations to minimize rig time and eliminate the need for a dedicated, standalone wireline operation. Also, the cement evaluation interpretation was comparable to the equivalent wireline technology. We will investigate which measurements and applications the new tool can be used for and where there may be further room for improvement.
Read full abstract