Abstract In contrast to boreal winter when extratropical seasonal predictions benefit greatly from ENSO-related teleconnections, our understanding of forecast skill and sources of predictability in summer is limited. Based on 40 years of hindcasts of the Canadian Seasonal to Interannual Prediction System, version 3 (CanSIPSv3), this study shows that predictions for the Northern Hemisphere summer surface air temperature are skillful more than 6 months in advance in several midlatitude regions, including eastern Europe–Middle East, central Siberia–Mongolia–North China, and the western United States. These midlatitude regions of statistically significant predictive skill appear to be connected to each other through an upper-tropospheric circumglobal wave train. Although a large part of the forecast skill for the surface air temperature and 500-hPa geopotential height is attributable to the linear trend associated with global warming, there is significant long-lead seasonal forecast skill related to interannual variability. Two additional idealized hindcast experiments are performed to help shed light on sources of the long-lead forecast skill using one of the CanSIPSv3 models and its uncoupled version. It is found that tropical ENSO-related sea surface temperature (SST) anomalies contribute to the forecast skill in the western United States, while land surface conditions in winter, including snow cover and soil moisture, in the Siberian and western U.S. regions have a delayed or long-lasting impact on the atmosphere, which leads to summer forecast skill in these regions. This implies that improving land surface initial conditions and model representation of land surface processes is crucial for the further development of a seasonal forecasting system. Significance Statement Useful seasonal predictions in the boreal summer midlatitude regions are of great value. In this study, we show that predictions for the boreal summer season are skillful more than 6 months in advance in several midlatitude regions, including eastern Europe–Middle East, central Siberia–Mongolia–North China, and the western United States. The forecast skill in these regions is associated with a circumglobal teleconnection atmospheric circulation pattern. Sources of the long-lead forecast skill include the global warming–related trend and anomalies in the ocean and land surface initial conditions. It is found that the wintertime snow cover and soil moisture in the Siberian and western U.S. regions have a delayed or long-lasting impact on the atmosphere, which leads to summer forecast skill.
Read full abstract