This study investigated the effects of inner mitochondrial membrane peptidase 2-like (Immp2l) deletion on mitochondrial apoptosis and mitochondrial autophagy under hyperglycemic conditions. The middle cerebral artery occlusion (MCAO) model was established in wild-type (WT) mice and Immp2l+/- mice; animals were then exposed to hyperglycemic (induced using 1% streptozotocin) and normoglycemic conditions. Tissues were collected at various time points post-reperfusion. The production of reactive oxygen species (ROS) was assessed by fluorescent measurements, and mitochondrial membrane potential was evaluated using a JC-1 assay kit. Autophagy was analyzed by measuring LC3II/LC3I protein expression and Beclin 1 expression. Mitochondrial ultrastructure was examined through transmission electron microscopy (TEM); neuronal autophagosomes were also assessed. Immp2l mutation in a hyperglycemic environment exacerbated brain injury by increasing ROS production, compromising mitochondrial membrane potential, inducing apoptotic cascades, and impairing mitochondrial autophagy. These findings highlight the critical role of Immp2l in modulating the response to hyperglycemic cerebral ischemia-reperfusion (I/R) injury. Furthermore, the deficiency of Immp2l appears to contribute to increased oxidative stress, mitochondrial dysfunction, and cell death, thereby exacerbating brain injury. These data may provide new insights into therapeutic strategies for reducing the impact of diabetes on stroke outcomes.
Read full abstract