Radiotherapy is an effective treatment for head and neck cancer; however, irradiated normal tissues are inevitably damaged, resulting in skin radioactive fibrosis. Dicliptera chinensis polysaccharide (DCP), the primary active compound extracted from the natural medicinal Dicliptera chinensis, exhibits antioxidant, anti-inflammatory, and anti-radiation properties. In this study, we investigated the protective effects of DCP against radioactive fibrosis in rat dermal fibroblasts (RDF) and explored the underlying mechanisms involved. RDFs were treated with DCP, and the CCK8 assay was used to determine cellular activity. The rates of apoptosis and cell cycle progression were detected using flow cytometry. mRNA expression levels were quantified using real-time polymerase chain reaction. Protein levels were analysed through Western blotting and immunofluorescence staining RESULTS: DCP reduced radiation-induced apoptosis, and the cell cycle G2/M arrest was alleviated. Furthermore, DCP decreased the expression of key fibrosis-related markers, including α-SMA, TGF-β1, Smad3, and CTGF. DCP exhibits a protective effect against radiation-induced fibrosis.
Read full abstract